FAQs

Frequently Asked Questions


No, Oberon does not offer a lift front option. Oberon believes that these types of hoods are extremely dangerous due to the increased likelihood of the user opening the hood within the arc flash boundary. Since Oberon invented the first ever arc flash suit hood in 1987, we have promoted the safest possible product solutions for worker safety. The bee-keeper traditional style hood provides more protection than a lift front style by fully protecting the workers face and head.  It is critical to not expose any part of the body (especially the face) inside of the arc flash boundary. Oberon believes that the combination of our TCG clear lens technology with exceptional clarity and our Hood Ventilation System (HVS) as a total protective system prevent any need for the worker to compromise their safety by lifting the front of their hood.

A common misconception is that a person wearing an arc rated suit is “bullet proof” from the hazards associated with electricity. However there are 3 hazards associated with t electricity; Electric Shock, Arc Flash and Arc Blast. There is currently no known arc flash PPE that is also rated for protection from an Arc Blast. However, the significant issue with wearing arc-ratedPPE is that most wearers do not understand that their arc-rated PPE has zero protection from electric shock. These suits are not voltage rated.  Extreme caution must be exercised within the Restricted Approach Boundary as inadvertent movement within that boundary will increase the likelihood of an electric shock. Arc rated PPE is loosely fitting by design so being keenly aware of this within the Restricted Approach Boundary can be the difference between life and death.

Selecting appropriate arc flash PPE knowing only the voltage is impossible. You must have knowledge of the electrical equipment being worked on including the fault clearing time and the available fault current as well as the voltage. If the equipment is in an abnormal operating condition, and with the appropriate knowledge of the electrical equipment, you may be able to utilize the NFPA 70E 130.7 tables to select appropriate arc rated PPE.

Selecting appropriate arc flash PPE knowing only the voltage is impossible.  You must have the fault clearing time and the available fault current as well as the voltage.  If the equipment is in normal operating condition, you may be able to utilize the NFPA 70E 130.7 tables to select appropriate arc rated PPE.

No, it is impossible to know what protection is necessary without first completing an arc flash risk assessment. While it is true that the majority of energized work does fall within Arc Flash PPE Category 2 or have thermal incident exposure values below 8 cal/cm2, you can’t assume anything. You must use either the Incident Energy Analysis Method or Arc Flash PPE Category Method as part of your arc flash risk assessment to determine what protection is necessary.

Voltage does not determine the arc flash hazard. Knowing the voltage is only one piece of determining Arc Flash PPE. The electrode orientation, available fault current (amps), the working distance between the worker and the equipment, the clearing time of the circuit protection device, the spacing between conductors or from a conductor to ground, the number of phases, whether the conductors are in an enclosure, and the equipment configuration must all be considered when determining the potential severity of an arc flash hazard. NFPA 70E provides two methods for the selection of arc flash PPE as part of an overarching requirement to complete an arc flash risk assessment. The two selection methods are;

  • Incident energy analysis method. Often referred to as an “arc flash study”, requires engineering calculations to determine the potential thermal incident energy in the event of an arc flash. Arc flash PPE is then selected so the arc rating (protection) matches or exceeds the calculated incident energy. Both the thermal incident energy and protective arc ratings are calculated as calories per square centimeter (cal/cm2).
  • Arc flash PPE category method. Otherwise known as the “table method”, involves a simplified approach using the tables from within the Standard to determine a category number from 1-4 and corresponding arc flash PPE minimum requirements. The table method requires validation of the parameters used in the creation of the categories, otherwise the user is forced into using the incident energy analysis method. Refer to Oberon’s catalog on page #5 for arc flash PPE category product information.

Either, but not both, arc flash PPE selection methods can be used on the same piece of equipment. The engineering calculations used in the incident energy analysis method cannot be used to specify an arc flash PPE category. Keep both methods separate and document your decision making processes within your company’s Electrical Safety Program.

The bottom line is that you can’t rely on voltage alone to figure out what arc flash PPE you need. NFPA 70E requires the employer to complete an arc flash risk assessment. If additional protective measures are required, arc flash PPE can be applied as a control to mitigate the risk of an arc flash. Refer to the latest edition of the NFPA 70E Standard to learn more about the requirements for an arc flash risk assessment.

There are three different types of arc-rated flame resistant (FR) fabrics available on the market; Treated non-inherently FR fabrics, Inherently FR fabrics and Treated Inherently FR fabrics. Treated non-inherently FR fabrics, either 100% cotton, or cotton blends, have no flame resistant properties and require a chemical treatment application to become flame resistant. (FRT) Inherent fabrics are engineered to be flame resistant (IFR), and there is no chemical that needs to be added to them for their protective capabilities. Treated Inherently FR fabrics are when traditional Inherently FR fabrics are treated using a similar process to non-inherently FR fabrics, resulting in a lightweight inherently FR fabric that provides more protection. Regardless of the type of FR fabric, the material must still be arc-rated with either an Arc Thermal Performance Value (ATPV) or an Energy Break-open Threshold (EBT).

Arc Flash PPE is tested to determine its protective ability, this is called an arc rating. This testing is done on the fabric or a finished product using various different testing methods according to applicable Standards. Arc-rated clothing provides insulation that protects a worker from the thermal incident energy caused by an arc flash incident.

There are various different types of arc ratings. In North America, the most popular product options have an ATPV or EBT rating. An arc rating is reported as either ATPV or EBT, whichever is the lower value. The ELIM is a new way to evaluate the arc thermal resistance properties to select PPE with a lower risk of a worker skin burn injury. All of these values are provided in calories per square centimeter (cal/cm2).

ATPV: Arc Thermal Performance Value, the incident energy level at which there is a 50% probability of sufficient heat transfer to cause the onset of a second-degree skin burn injury.

EBT: Break-open Threshold Energy, the incident energy level at which there is a 50% probability of the formation of holes or tears in the layer closest to the skin.

ELIM: Incident Energy Limit, the highest incident energy data point without breakopen and without reaching the onset of a second-degree skin burn injury

The most common type of arc rating is the Arc Thermal Performance Value, or ATPV. Selecting PPE with an arc rating that matches or exceeds the highest level of potential thermal incident energy exposure from an arc flash incident, is critical in protecting your electrical workers. It is critical to know the incident energy potential of the equipment in your electrical environment to effectively choose the correct Arc-Rated PPE with the appropriate arc-rating.

 

The NFPA 70E Standard requires that all arc flash PPE is pre-use inspected. Refer to Oberon’s resource section of the website for literature resources including User Guides and Storage, Use, Care & Maintenance files. While inspecting your arc flash faceshield if you identify a problem do not use the product until the issue has been repaired, cleaned or replaced. When pre-use inspecting your Oberon arc flash suit you should inspect each item one at a time.

 

The following steps apply when pre-use inspecting your Oberon arc flash faceshield;

  • Check the faceshield visibility, inspect for excessive scratching. If visibility is impaired or the shield is cracked or damaged remove from use (replace with appropriate lens).
  • Manually adjust the shield mounting mechanism (adapters) to ensure wing nuts are firmly in place, do not over tighten or the shield won’t be able to operate correctly.
  • Inspect adapters for cracks or damage, ensure fingers are locked into hard hat slots.
  • Check hard hat slots and inspect for cracks that could allow the adapter to slip out.
  • Ensure the nuts and bolts fastening a lower chin guard (double crown) are tight before use.

The NFPA 70E Standard requires that all arc flash PPE is pre-use inspected. Refer to Oberon’s resource section of the website for literature resources including User Guides and Storage, Use, Care & Maintenance files. While inspecting your arc flash suit if you identify a problem do not use the product until the issue has been repaired, cleaned or replaced. When pre-use inspecting your Oberon arc flash suit you should inspect each item one at a time.